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Abstract

We propose to utilize the band spectral regression for out-of-sample forecasts of exchange
rates. When one period ahead forecast is considered, there is some evidence that the band
spectral regression benefits us especially when the Taylor rule fundamentals model is employed.
However, when the forecasting horizon increases, the purchasing power parity (PPP) fundamen-
tals model is found to be powerful and we can improve the out-of-sample forecast by selecting
appropriate frequency bands. Bayesian model averaging shows that placing a high weight on
the business cycle frequency improves the accuracy of the out-of-sample forecasting of the PPP
model (as well as the monetary fundamentals model) when a longer forecasting horizon is our
focus. Without specifying the frequency bands prior to applying the regression, LASSO can
provide better out-of-sample exchange rate forecasts for many cases and provide information

about the dynamic relationship between forecasting variables and exchange rates.
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1 Online Appendix 1: The Band Spectral Regression and The Time-Domain OLS

Suppose process y is generated by

o0
Yt = Z b?fbt—j + &,

j=—o0

where {y;, 2} are jointly stationary and E [eqx;—;] = 0 for all j. Suppose that we run a regression

assuming

o0
ye= Y bimj+u

j=—o00
where bjl- = 0 for some j by assumption (hence, it is impossible to find bjl- = b? for all j.)
According to Sims (1972) and Sargent (1987), OLS is equivalent to finding bjl- by solving a

minimization problem:
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for k =0,1; and g, (e_i“’) is the spectral density of .

Now, suppose that we estimate the model
Y = bllL‘t -+ Ug. (2)

Then, the time domain regression involves minimizing
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The first-order-condition yields
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giving the estimate of b, /b\})LS as
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Now, let us consider the band spectral regression. Suppose that we allow low frequency band
[0,wp] and high frequency band (wp, 7| to have different coefficients. More specifically, we assume
B 4 for the low frequency band and (  cfor the high frequency band.

Then, we have

bt (e7) = Bal(w|<wo) T Bacl(u|>wo):

which, in the case of our regression model (2) means that,

bl — ﬁAwO + ﬁAC
™

(m —wo) .

Because band spectral regression minimizes the squared residuals in the time domain (see Corbae
et al. 2002, among others) to find the unknown parameters 34 and 3 4¢, the minimization problem

is the same as (1) . Henceforth,
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It is clear that the band spectral regression can generally yield a smaller mean squared error
because it has two free parameters to be estimated. However, it is not immediately clear whether
the band spectral regression with a restriction that 3 4¢ = 0 prevails in the time domain regression.
To see this, set §4c = 0, and then consider the minimization problem:

min { [0 () Pga () o [0 () < g ()
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The first order condition is
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Hence,
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Having two estimates, we can now compare the mean squared errors. The mean squared error

for the band spectral regression is smaller than that for the time-domain OLS when:
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To simplify the argument, let us assume that x; is a white noise process, that is, g, (e*i“’) =

. 2 .
bO (e—zw) 7610[/3) 0o (e—zw) dw

v° (e_i“’) —/l;})LSrgz (e_i“’) dw. (3)

1/27. The estimates of the time domain OLS and the band spectral regression are then:

BloLS = % v° (e_i“’) dw and
~ fffm b0 (™) dw
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respectively.

Then, condition (3) becomes:
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The left hand side is
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and the right hand side is
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Therefore, inequality (3) holds when
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The band spectral regression yields a smaller mean squared error as long as (4) is satisfied.
Of course, the imprecise estimation of B 4 may lead to a larger estimated mean squared error (or

average squared residual) for the band spectral regression than that for the time domain OLS.



2 Appendix 2: The LASSO Specification and Estimation

2.1 The LASSO Specification

The LASSO specification is

Ye = \I/XcﬁA"i'uc

= P+ . (5)

First, we define some vectors and matrices that are used to render ¥.X .34 to the product of

the known matrix P and the unknown vector (.

Let
a = vec(A)
!/
and o = a11 agy - app > are the diagonal elements of A. Then, it is well known that
there exists a matrix Cy
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wheree;=| 0 -+ 1 .-~ 0 |,suchthat CqC/ =1 and
~—~
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Note further that
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The reason why we define @, and a. is that the frequency bands (7w — h) and (7 + h) should
have the same information. Hence, if a(ry1)/2—, (7+1)/2-x = 1 then a(ri3)/24k,(1743)/2++ must be 1
when T is odd. Similarly, a(r2)/2—k,(7+2)/2— a0d a(1742) 24k, (T+2)/2+k Must have the same number
(either 0 or 1) when T is even.

By using the vectors and matrices defined above, we render the first term on the right hand

side:

UX .04 = vec(VX.0y)

vec (B, @ W AW)

<ﬁ ( ® W’) C’éa)
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(
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where W~ is a non-conjugate, transposed matrix of W.
Now, let us consider a case where 3, is scalar and a case where 3, is a k x 1 vector. For

simplicity, we only show the derivation of (5) when T is odd.

e When (3, is a scalar (k=1)
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where P = (vec (X)) ® IT) ,and ¢ = (WT ® W’) CDof3 g0t Therefore,
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where P = (vec (XC)IWT ® W/> CliD,, and ¢ = 4.

2.2 The Estimation of the Diagonal Elements of the A Matrix

Similar to the previous subsection, we consider two cases:

o If 5, is a scalar (k=1)

Since ¢ = 8 4a,, we look at whether each row of ( is non-zero by checking the absolute value
of the i-th row to see that is less than le-5; that is |(;| < le — 5. If so, we place 0 in the

corresponding frequency, and place 1 otherwise.

o If 34 isak x 1 vector

There are k estimates of the j-th frequency (multiplied by 84): B4a; ;. If the minimum of
the absolute value of k estimates is less than le — 5, we place 0 in the j-th frequency, and

place 1 otherwise.

3 Appendix 3: The Inferences: Clark and McCracken (2012) Test

3.1 The Nested Model

y = UZ(ry —afB,) 4+ V7 (my —TaBue) + UX B4 + VX[ pe + €

= 7 — U8, — OB + UXB, + VX By +6

because Z = 1.

o If 4. = 0 (restricted), then the model is
Yy =11 —\I/HQ/BA+\I]X/6A+E

The null hypothesis is 34 = 0.

o If B4 # 0 (nonrestricted), then the model is

y=m1 — Wl — UMaBye + VXBY + VX Bye +€
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The null hypothesis is 54 = 0 and G 4. = 0.
In both cases, the model under the alternative hypothesis nests the model under the null
hypothesis.

3.2 The Bootstrap Procedure

Clark and McCracken (2012) and summarized in Clark and McCracken (2013)

1. Step 1: Run a regression with the full set of regressors (unrestricted; x’ls) to obtain the
residuals Uy g4+

! D ~
Ytrs = $1,551,T + V1 5qr for s =1,2,...,T — 7.

Here, we treat a) , as the regressor using all frequencies, (0,7) (i.e., we assume that y;4s is

generated from the time-domain regression model).

2. Step 2 Run a regression with the subset of regressors (restricted; x’g’ ) to obtain the residuals
@\2,5—4—7

I R ~
Yt+s = Ty Pop +Vasir for s =1,2,..., T — 1.

In our case, 1:’2 s = 1 because under the null hypothesis y;; s follows the random walk process

with a drift.

3. Step 3: For the unrestricted residuals, fit an MA(7 — 1) model provided 7 > 1.

Vl,s+1 = O1€s4r—1 + 0265172+ + 0, 16511 +Espr

4. Step 4: ng ~i.i.d.N (0,1) for s=1,2,...,T and

e ~
fUl’S_;'_l = 7’]3+1U1’s+1 for T = 1

~k z o~ z o~ 3 ~ ~

Vl,s+r — 1 Estr—1Msqr—1 +028str—2Ngir o+ + 0r1€s11Ms41 + Esprngy, for 7>1

5. Step 5: Generate

* N ~x
Ysyr = x2,sﬁ2,T + Ul,s-l—’r

11



6. Step 6: Using the artificial data (y}, ), compute the test statistics

7. Step 7: Repeat Steps 4 to 6 N times. This gives the empirical distribution of the simulated
statistics. Count the number of times the test statistic from the real data (ys4,) exceed that

from the artificial data (y}, ) and divide it by NV to get the p-value.

Note that under the null hypothesis, (the difference of) the exchange rate follows the random
walk process, but under the alternative, the same y; ;s is used for all band spectral regressions
(i.e., the regressions using high-, low-, middle-, business cycle- and all frequencies). Therefore, in
each bootstrapping trial, the test statistics are computed from the same pseudo data for all the

regressors employing different frequency bands.

3.3 Test Statistics

o MSE-F test:

EZ;R—HL—H dy ( 1 >
F= = =(T-R-h) (a1
(T-R-h)"" S pini€? ( )\ 315 ratio

where d; = re? — €.
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4 Figures
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Figure 7 (a): Estimated Average A for the PPP fundamentals with h = 1.

(Business cycle frequencies are shaded.)
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Figure 7 (b): Estimated A for the PPP fundamentals with i = 1.
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Figure 8(a): Estimated Average A for Monetary fundamentals with h = 1.
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(Business cycle frequencies are shaded.)
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Figure 8(b): Estimated A for Monetary fundamentals with h = 1.
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Figure 9(a): Estimated Average A for the Taylor Rule Fundamentals with h = 1.

(Business cycle frequencies are shaded.)
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Figure 9(b): Estimated A for the Taylor Rule Fundamentals with h = 1.

16



Canada Switzerland

1 T 1 ~ =
08 0.8
0.6 1 0.6
< <
04r 04
02 0.2
0 0
0 1 2 3 0 1 2 3
Frequency Frequency
UK Australia
1 T ™ W 1 — v ]
08 0.8
06 [ 0.6
< <
04 04
02F 0.2
0 : : : 0 : : :
0 1 2 3 0 1 2 3
Frequency Frequency

Figure 10(a): Estimated Average A for the PPP Fundamentals with h = 6.

(Business cycle frequencies are shaded.)
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Figure 10(b): Estimated A for the PPP Fundamentals with h = 6.
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Figure 11(a): Estimated Average A for the PPP Fundamentals with h = 12.
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(Business cycle frequencies are shaded.)
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Figure 11(b): Estimated A for the PPP Fundamentals with h = 12.
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Figure 12(a): Estimated Average A for the PPP Fundamentals with h = 24.

(Business cycle frequencies are shaded.)
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Figure 12(b): Estimated A for the PPP Fundamentals with h = 24.
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Figure 13(a): Estimated Average A for Monetary Fudamentals with h = 6, 12, and 24.

Japan, h=6

T e WS i

1 2
Frequency

Japan, h=24

1 2
Frequency

0.8

0.6

0.4

0.2

Japan, h=12

~= o

1

2
Frequency

(Business cycle frequencies are shaded.)

21

VA AEEE WS R e o |




Japan, h=6 Japan, h=12

L -
0 2000 0

Frequency time Frequency time

Japan, h=24

Frequency time

Figure 13(b): Estimated A for Monetary Fudamentals with h = 6, 12, and 24.
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