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Abstract

We propose to utilize the band spectral regression for out-of-sample forecasts of exchange

rates. When one period ahead forecast is considered, there is some evidence that the band

spectral regression bene�ts us especially when the Taylor rule fundamentals model is employed.

However, when the forecasting horizon increases, the purchasing power parity (PPP) fundamen-

tals model is found to be powerful and we can improve the out-of-sample forecast by selecting

appropriate frequency bands. Bayesian model averaging shows that placing a high weight on

the business cycle frequency improves the accuracy of the out-of-sample forecasting of the PPP

model (as well as the monetary fundamentals model) when a longer forecasting horizon is our

focus. Without specifying the frequency bands prior to applying the regression, LASSO can

provide better out-of-sample exchange rate forecasts for many cases and provide information

about the dynamic relationship between forecasting variables and exchange rates.

JEL Classi�cation Number: C22; C52; F31; F47.

Keywords: Band Spectral Regression, Bayesian Model Averaging, Exchange Rate Models,

Frequency Domain, LASSO.

�Faculty of Policy Management, Keio University, 5322 Endo, Fujisawa, Kanagawa, 252-0882, Japan (E-mail:
twada@sfc.keio.ac.jp, Tel. +81-466-49-3451, Fax. +81-466-49-3451).

1



1 Online Appendix 1: The Band Spectral Regression and The Time-Domain OLS

Suppose process y is generated by

yt =
1X

j=�1
b0jxt�j + "t;

where fyt; xtg are jointly stationary and E ["txt�j ] = 0 for all j. Suppose that we run a regression

assuming

yt =
1X

j=�1
b1jxt�j + ut;

where b1j = 0 for some j by assumption (hence, it is impossible to �nd b
1
j = b

0
j for all j.)

According to Sims (1972) and Sargent (1987), OLS is equivalent to �nding b1j by solving a

minimization problem:

min
b1j

Z �

��

��b0 �e�i!�� b1 �e�i!���2 gx �e�i!� d!; (1)

where

bk
�
e�i!

�
=

1X
j=�1

bkj e
�ij!;

for k = 0; 1; and gx
�
e�i!

�
is the spectral density of xt.

Now, suppose that we estimate the model

yt = b
1xt + ut: (2)

Then, the time domain regression involves minimizing

Z �

��

��b0 �e�i!�� b1��2 gx �e�i!� d!:
The �rst-order-condition yields

2bb1OLS � Z �

��

��b0 �e�i!�+ b0 �ei!��� gx �e�i!� d! = 0;
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giving the estimate of b1, bb1OLS as
bb1OLS = 1

2

�Z �

��

�
b0
�
e�i!

�
+ b0

�
ei!
��
gx
�
e�i!

�
d!

�
:

Now, let us consider the band spectral regression. Suppose that we allow low frequency band

[0; !0] and high frequency band (!0; �] to have di¤erent coe¢ cients. More speci�cally, we assume

�A for the low frequency band and �AC for the high frequency band.

Then, we have

b1
�
e�i!

�
= �A1(j!j<!0) + �AC1(j!j>!0);

which, in the case of our regression model (2) means that,

b1 =
�A!0
�

+
�AC

�
(� � !0) :

Because band spectral regression minimizes the squared residuals in the time domain (see Corbae

et al. 2002, among others) to �nd the unknown parameters �A and �AC , the minimization problem

is the same as (1) . Henceforth,

min
�A;�AC

Z �

��

��b0 �e�i!�� �A1(j!j<!0) � �AC1(j!j>!0)��2 gx �e�i!� d!
= min

�Z �

!0

��b0 �e�i!�� �AC ��2 gx �e�i!� d! + Z !0

�!0

��b0 �e�i!�� �A��2 gx �e�i!� d!
+

Z �!0

��

��b0 �e�i!�� �AC ��2 gx �e�i!� d!�

It is clear that the band spectral regression can generally yield a smaller mean squared error

because it has two free parameters to be estimated. However, it is not immediately clear whether

the band spectral regression with a restriction that �AC = 0 prevails in the time domain regression.

To see this, set �AC = 0, and then consider the minimization problem:

min
�A

�Z �

!0

��b0 �e�i!���2 gx �e�i!� d! + Z !0

�!0

��b0 �e�i!�� �A��2 gx �e�i!� d!
+

Z �!0

��

��b0 �e�i!���2 gx �e�i!� d!� :
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The �rst order condition is

2b�A Z !0

�!0
gx
�
e�i!

�
d! �

Z !0

�!0

�
b0
�
e�i!

�
+ b0

�
ei!
��
gx
�
e�i!

�
d! = 0:

Hence,

b�A =
R !0
�!0

�
b0
�
e�i!

�
+ b0

�
ei!
��
gx
�
e�i!

�
d!

2
R !0
�!0 gx (e

�i!) d!
:

Having two estimates, we can now compare the mean squared errors. The mean squared error

for the band spectral regression is smaller than that for the time-domain OLS when:

Z �

!0

��b0 �e�i!���2 gx �e�i!� d! + Z !0

�!0

���b0 �e�i!�� b�A���2 gx �e�i!� d! + Z �!0

��

��b0 �e�i!���2 gx �e�i!� d!
<

Z �

!0

���b0 �e�i!��bb1OLS���2 gx �e�i!� d! + Z !0

�!0

���b0 �e�i!��bb1OLS���2 gx �e�i!� d!
+

Z �!0

��

���b0 �e�i!��bb1OLS���2 gx �e�i!� d!: (3)

To simplify the argument, let us assume that xt is a white noise process, that is, gx
�
e�i!

�
=

1=2�. The estimates of the time domain OLS and the band spectral regression are then:

bb1OLS =
1

2�

Z �

��
b0
�
e�i!

�
d! and

b�A =

R !0
�!0 b

0
�
e�i!

�
d!

2!0
;

respectively.

Then, condition (3) becomes:
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1

2�

Z �

!0

��b0 �e�i!���2 d! + 1

2�

Z !0

�!0

���b0 �e�i!�� b�A���2 d! + 1

2�

Z �!0

��

��b0 �e�i!���2 d!
<

1

2�

Z �

!0

���b0 �e�i!��bb1OLS���2 d! + 1

2�

Z !0

�!0

���b0 �e�i!��bb1OLS���2 d!
+
1

2�

Z �!0

��

���b0 �e�i!��bb1OLS���2 d!
The left hand side is

1

2�

Z �

��

��b0 �e�i!���2 d! � 1

4�!0

�Z !0

�!0
b0
�
e�i!

�
d!

�2
;

and the right hand side is

1

2�

Z �

��

��b0 �e�i!���2 d! � 1

4�2

�Z �

��
b0
�
e�i!

�
d!

�2
:

Therefore, inequality (3) holds when

� 1

4�!0

�Z !0

�!0
b0
�
e�i!

�
d!

�2
< � 1

4�2

�Z �

��
b0
�
e�i!

�
d!

�2
or hR !0

�!0 b
0
�
e�i!

�
d!
i2

hR �
�� b

0 (e�i!) d!
i2 >

!0
�

(4)

The band spectral regression yields a smaller mean squared error as long as (4) is satis�ed.

Of course, the imprecise estimation of b�A may lead to a larger estimated mean squared error (or
average squared residual) for the band spectral regression than that for the time domain OLS.
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2 Appendix 2: The LASSO Speci�cation and Estimation

2.1 The LASSO Speci�cation

The LASSO speci�cation is

yc = 	Xc�A + uc

= P� + uc: (5)

First, we de�ne some vectors and matrices that are used to render 	Xc�A to the product of

the known matrix P and the unknown vector �.

Let

a = vec (A)

and � =

 
a11 a22 � � � aTT

!0
are the diagonal elements of A. Then, it is well known that

there exists a matrix Cd

Cd|{z}
T�T 2

= diag

 
e01 e02 � � � e0T

!
;

where ei =

0@ 0 � � � 1|{z}
i�th

� � � 0

1A0, such that CdC 0d = I and
� = Cda and a = C 0d�:

Note further that

� = Doe�o if T is odd

= Dee�e if T is even,
where
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e�o|{z}
(T+1)=2�1

=

"
a11 a22 a33 � � � a(T+1)=2;(T+1)=2

#0

e�e|{z}
(T+2)=2�1

=

"
a11 a22 a33 � � � a(T+2)=2;(T+2)=2

#0
;

Do =

2666666666666666666666666666664

1 0

1

. . .

0 1

0 1

1

0 1

3777777777777777777777777777775
| {z }

T�(T+1)=2

; De =

26666666666666666666666664

1 0

1

. . . 0

0 1

0 � 0

0 1 0 0

37777777777777777777777775
| {z }

T�(T+2)=2

Do =

26666666664

1 01�(T�1)=2

0(T�1)=2�1 I(T�1)=2

0(T�1)=2�1 eI(T�1)=2

37777777775
; De =

2666666666666664

1 01�(T�2)=2 0

0(T�2)=2�1 I(T�2)=2 0(T�2)=2�1

0 01�(T�2)=2 1

0(T�2)=2�1 eI(T�2)=2 0(T�2)=2�1

3777777777777775
| {z }

T�(T+2)=2

;
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and

eI =

2666666666666664

0 0 0 1

0 0 1 0

0 1 0 0

1 0 0 0

3777777777777775
:

The reason why we de�ne e�o and e�e is that the frequency bands (� � h) and (� + h) should
have the same information. Hence, if a(T+1)=2�k;(T+1)=2�k = 1 then a(T+3)=2+k;(T+3)=2+k must be 1

when T is odd. Similarly, a(T+2)=2�k;(T+2)=2�k and a(T+2)=2+k;(T+2)=2+k must have the same number

(either 0 or 1) when T is even.

By using the vectors and matrices de�ned above, we render the �rst term on the right hand

side:

	Xc�A = vec (	Xc�A)

=
�
�0A 
	

�
vec (Xc)

=
�
vec (Xc)

0 
 IT
�
vec

�
�0A 
W 0AW

�
=

�
vec (Xc)

0 
 IT
� �
�A 


�
W
T 
W 0

�
C 0d�

�
=

�
vec (Xc)

0 
 IT
� �
�A 


�
W
T 
W 0

�
C 0dDoe�o� if T is odd

=
�
vec (Xc)

0 
 IT
� �
�A 


�
W
T 
W 0

�
C 0dDee�e� if T is even,

where W
T
is a non-conjugate, transposed matrix of W .

Now, let us consider a case where �A is scalar and a case where �A is a k � 1 vector. For

simplicity, we only show the derivation of (5) when T is odd.

� When �A is a scalar (k = 1)

=
�
vec (Xc)

0 
 IT
�| {z }

T�T 2

�
W
T 
W 0

�
| {z }

T 2�T 2

C 0d|{z}
T 2�T

Do|{z}
T�(T+1)=2

�Ae�o| {z }
(T+1)=2�1

= P|{z}
T�T 2

�|{z}
T 2�1
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where P =
�
vec (Xc)

0 
 IT
�
;and � =

�
W
T 
W 0

�
C 0dDo�Ae�o. Therefore,

� =

"
�A;1a11 � � � �A;1a(T+1)=2;(T+1)=2

#0
:

� The estimation of A

[�Ae�o = D0h;oCd �W 
W
�b�

where

Dh;o =

2666666666666666666666666666664

1 0

1=2

. . .

0 1=2

0 1=2

1=2

0 1=2

3777777777777777777777777777775
| {z }

T�(T+1)=2

;

so that D0h;oDo = I.

� The Alternative LASSO speci�cation

	Xc�A =
�
vec (Xc)

0 
 IT
�| {z }

T�T 2

�
W
T 
W 0

�
| {z }

T 2�T 2

C 0d|{z}
T 2�T

Do|{z}
T�(T+1)=2

�Ae�o| {z }
(T+1)=2�1

=
�
vec (Xc)

0W
T 
W 0

�
| {z }

T�T 2

C 0d|{z}
T 2�T

Do|{z}
T�(T+1)=2

�Ae�o| {z }
(T+1)=2�1

= P|{z}
T�(T+1)=2

�|{z}
(T+1)=2�1

;
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where P =
�
vec (Xc)

0W
T 
W 0

�
C 0dDo, and � = �Ae�o.

2.2 The Estimation of the Diagonal Elements of the A Matrix

Similar to the previous subsection, we consider two cases:

� If �A is a scalar (k = 1)

Since � = �A�o, we look at whether each row of � is non-zero by checking the absolute value

of the i-th row to see that is less than 1e-5; that is j�ij < 1e � 5. If so, we place 0 in the

corresponding frequency, and place 1 otherwise.

� If �A is a k � 1 vector

There are k estimates of the j-th frequency (multiplied by �A): �Aaj;j . If the minimum of

the absolute value of k estimates is less than 1e � 5, we place 0 in the j-th frequency, and

place 1 otherwise.

3 Appendix 3: The Inferences: Clark and McCracken (2012) Test

3.1 The Nested Model

y = 	Z (�1 ��2�A) + 	cZ (�1 ��2�Ac) + 	X�A +	cX�Ac + "

= �1 �	�2�A �	c�2�Ac +	X�A +	cX�Ac + "

because Z = 1.

� If �Ac = 0 (restricted), then the model is

y = �1 �	�2�A +	X�A + ":

The null hypothesis is �A = 0.

� If �Ac 6= 0 (nonrestricted), then the model is

y = �1 �	�2�A �	c�2�Ac +	X�A +	cX�Ac + "
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The null hypothesis is �A = 0 and �Ac = 0.

In both cases, the model under the alternative hypothesis nests the model under the null

hypothesis.

3.2 The Bootstrap Procedure

Clark and McCracken (2012) and summarized in Clark and McCracken (2013)

1. Step 1: Run a regression with the full set of regressors (unrestricted; x01;s) to obtain the

residuals bv1;s+�
yt+s = x

0
1;s
b�1;T + bv1;s+� for s = 1; 2; : : : ; T � � :

Here, we treat x01;s as the regressor using all frequencies, (0; �) (i.e., we assume that yt+s is

generated from the time-domain regression model).

2. Step 2 Run a regression with the subset of regressors (restricted; x02;s) to obtain the residualsbv2;s+�
yt+s = x

0
2;s
b�2;T + bv2;s+� for s = 1; 2; : : : ; T � � :

In our case, x02;s = 1 because under the null hypothesis yt+s follows the random walk process

with a drift.

3. Step 3: For the unrestricted residuals, �t an MA(� � 1) model provided � > 1.

bv1;s+� = �1"s+��1 + �2"s+��2 + � � �+ ���1"s+1 + "s+�
4. Step 4: �s � i:i:d:N (0; 1) for s = 1; 2; : : : ; T and

bv�1;s+1 = �s+1bv1;s+1 for � = 1

bv�1;s+� = b�1b"s+��1�s+��1 + b�2b"s+��2�s+��2 + � � �+ b���1b"s+1�s+1 + b"s+��s+� for � > 1

5. Step 5: Generate

y�s+� = x
0
2;s
b�2;T + bv�1;s+�
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6. Step 6: Using the arti�cial data (y�s+� ), compute the test statistics

7. Step 7: Repeat Steps 4 to 6 N times. This gives the empirical distribution of the simulated

statistics. Count the number of times the test statistic from the real data (ys+� ) exceed that

from the arti�cial data (y�s+� ) and divide it by N to get the p-value.

Note that under the null hypothesis, (the di¤erence of) the exchange rate follows the random

walk process, but under the alternative, the same yt+s is used for all band spectral regressions

(i.e., the regressions using high-, low-, middle-, business cycle- and all frequencies). Therefore, in

each bootstrapping trial, the test statistics are computed from the same pseudo data for all the

regressors employing di¤erent frequency bands.

3.3 Test Statistics

� MSE-F test:

F =

PT
t=R+h+1 dt

(T �R� h)�1
PT
t=R+h+1 e

2
t

= (T �R� h)
�

1

MSE ratio
� 1
�

where dt = re2t � e2t .
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4 Figures

Figure 7 (a): Estimated Average A for the PPP fundamentals with h = 1.

(Business cycle frequencies are shaded.)
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Figure 7 (b): Estimated A for the PPP fundamentals with h = 1.

Figure 8(a): Estimated Average A for Monetary fundamentals with h = 1.
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(Business cycle frequencies are shaded.)

Figure 8(b): Estimated A for Monetary fundamentals with h = 1.
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Figure 9(a): Estimated Average A for the Taylor Rule Fundamentals with h = 1.

(Business cycle frequencies are shaded.)

Figure 9(b): Estimated A for the Taylor Rule Fundamentals with h = 1.
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Figure 10(a): Estimated Average A for the PPP Fundamentals with h = 6.

(Business cycle frequencies are shaded.)
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Figure 10(b): Estimated A for the PPP Fundamentals with h = 6.

Figure 11(a): Estimated Average A for the PPP Fundamentals with h = 12.
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(Business cycle frequencies are shaded.)

Figure 11(b): Estimated A for the PPP Fundamentals with h = 12.
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Figure 12(a): Estimated Average A for the PPP Fundamentals with h = 24.

(Business cycle frequencies are shaded.)

Figure 12(b): Estimated A for the PPP Fundamentals with h = 24.
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Figure 13(a): Estimated Average A for Monetary Fudamentals with h = 6, 12, and 24.

(Business cycle frequencies are shaded.)
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Figure 13(b): Estimated A for Monetary Fudamentals with h = 6, 12, and 24.
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