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Abstract

We propose to utilize the band spectral regression for out-of-sample forecasts of exchange rates. When

one period ahead forecast is considered, there is some evidence that the band spectral regression benefits

us, especially when the Taylor rule fundamentals model is employed. However, when the forecasting

horizon increases, the purchasing power parity (PPP) fundamentals model is found to be powerful, and

we can improve the out-of-sample forecast by selecting appropriate frequency bands. Bayesian model

averaging shows that placing a high weight on the business cycle frequency improves the accuracy of

the out-of-sample forecasting of the PPP model (as well as the monetary fundamentals model) when

a longer forecasting horizon is our focus. Without specifying the frequency bands prior to applying

the regression, LASSO can provide better out-of-sample exchange rate forecasts for many cases — most

patently for the PPP fundamentals model — and provide information about the dynamic relationship

between forecasting variables and exchange rates.
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1 Introduction

Searching for models that describe the mechanism of exchange rate fluctuations is an intriguing research

topic in international finance. After three decades of advancements, not only in econometric techniques and

new general equilibrium models but also in trading environments in the real world, classical studies, such

as Meese and Rogoff (1983), remain as a powerful voice against the existence of such a model. However,

when we look at recent developments in this area of study in more detail, we see that a few things are

worth further investigation. Among others, Molodtsova and Papell (2009) find that incorporating monetary

policy based on the Taylor rule into exchange rate models significantly improves the out-of-sample forecast

of exchange rates.

The literature has recognized that the link between macroeconomic variables, in the same way as

standard economic models suggest, emerges only within certain frequencies. For example, after utilizing

the band-pass filter in the manner of Baxter and King (1995), Pakko (2002) shows that the phenomenon

known as the consumption correlation puzzle appears only in business cycle frequencies as defined by

Burns and Mitchell (1946). Wada (2012) claims that filtering should be applied to uncover the significant

relationship between the exchange rate and the interest rate differential that is implied by the interest

parity condition. This is because the existence of a unit root and rational expectations suggest that

the Beveridge-Nelson (BN) decomposition should reveal the link between the BN cyclical components of

exchange rate and the interest rate differential. Recently, similar results are discovered by Perron and Wada

(2016), who apply a very flexible trend-cycle decomposition method proposed by Perron and Wada (2009).

Therefore, it is meaningful to investigate whether the exchange rate models’ performance, especially in

their forecasting power, substantially improves once data are broken down into frequencies. To this end,

we employ the band spectral regression proposed by Hannan (1965) and Engle (1974), among others.

The contribution of this paper is two fold. First, we examine the out-of-sample forecasting power

of the purchasing power parity (PPP) model, the monetary model, and the Taylor rule model, such as

Molodtsova and Papell (2009), by utilizing the band-spectral regression. Extending the idea of band

spectral regression, our second contribution is to introduce Bayesian Model Averaging (BMA) and LASSO

2



regression (Tibshirani, 1996) into the literature of the out-of-sample forecast of exchange rates1. The reason

why we introduce those two elements into this study is that we wish to understand which frequencies are

relatively important for out-of-sample forecasting. By regarding the band-spectral regression for a certain

frequency band as a model, we are able to compare the relative importance of each frequency band in the

framework of BMA. While we find that BMA with the estimated posterior model probability does not

always improve the out-of-sample forecasting power, it is remarkably informative as to which frequency

band should be used to make better forecasts in some cases.2 The reason for employing LASSO is that

normally we have little knowledge as to which frequency bands should be used in the band spectral

regression prior to applying such regressions. In addition, the classification of low-, middle-, and high-

frequencies is somewhat arbitrary. Without specifying the frequency band beforehand, LASSO regression

only needs one smoothing parameter to be set. In this paper, the smoothing parameter is selected in such

a way as to forecast the future exchange rate more precisely. After finding such a smoothing parameter,

we estimate the relevant and irrelevant frequencies for out-of-sample forecasts.

Our findings from this study are the following: i) band spectral regression improves the out-of-sample

forecasting of exchange rates, with varying degrees of success across countries; ii) the fundamentals included

in the Taylor rule model are found to be strong forecasters for a one period ahead forecast, but the PPP

fundamentals are a powerful model when forecasting horizons are longer; iii) BMA improves the accuracy

of forecasting especially for the PPP fundamentals model, and it suggests the importance of business cycle

frequencies especially when long-horizon out-of-sample forecasting of exchange rates is considered; and

iv) without specifying the frequency bands prior to applying the regression, LASSO leads us to better

out-of-sample exchange rate forecasts for many cases but most patently for the PPP fundamentals model,

and LASSO can also provide information about dynamic relationships between forecasting variables and

exchange rates.

The rest of this paper is organized as follows. Section 2 details the exchange rate models and forecasting

procedures based on the band spectral regression. We also discuss as to why we should focus on frequency

bands to provide better forecasts in that section. To further investigate which frequencies should be selected

for forecasting, we employ BMA and LASSO in Section 3. Our empirical results are presented in Section

1There are some studies using LASSO for out-of-sample forecasting of exchanges rates in the time domain. See for example,

Colombo and Pelagatti (2020).
2As a recent study by Diebold and Shin (2019) suggests that it is possible to improve the forecasting power by combining

BMA with LASSO. However, the approach taken by Diebold and Shin (2019) does not use the frequency domain.
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4. Section 5 concludes.

2 Forecasting Exchange Rates

2.1 Exchange Rate Models

Among a variety of models describing exchange rate dynamics, we consider here the exchange rate models

that are frequently used for empirical studies, such as those considered by Mark (1995), Engel et al.

(2007), and Molodtsova and Papell (2009).3 Those models allow researchers to investigate as to whether

the current fundamentals, such as money supply and output have statistical associations with the future

exchange rate. In other words, with those models, one can examine whether the current fundamentals have

a forecasting power on the future exchange rate. Let st denote the (logarithm of) nominal, spot exchange

rate at time-t. Then, a forecasting model for the h-period ahead exchange rate, st+h is given by:

st+h − st = αh + βhzt + ut+h (1)

where zt = ft−st; and ft is (a linear combination of) fundamentals at time-t. One such set of fundamentals
are those suggested by the monetary model,

ft = (mt −m∗t )− φ (yt − y∗t ) . (2)

wheremt is the log of the money supply, yt is output, and φ is a constant that is specified later. Throughout

this paper, variables with an asterisk indicate the variables for a foreign country whose currency value

relative to a home currency’s value is defined as the exchange rate, st. Departing from the monetary

model, Molodtsova and Papell (2009) consider empirical exchange rate models including i) the interest

parity condition and ii) the monetary policy based on the Taylor rule, which incorporates the real exchange

rate (a la Clarida, Gali, and Gertler 1998).4 When such departures are taken into account, future exchange

rate depreciation is predicted by

st+1 − st = α1 + β01wt + vt+1, (3)

3Evans (2011) reviews empirical studies.
4Molodtsova and Papell (2009) consider the case involving interest rate smoothing, which implies the observed current

interest rate is the weighted average of the target rate and the past interest rate. In such a case, the fundamentals vector wt
includes the past interest rate. This paper, however, does not consider interest rate smoothing.
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where the regressor wt is a vector of variables that pertain to the Taylor rule and vt+1 is an error term.

In this paper, we will focus on the following variables in our regressor to forecast future depreciations of

the exchange rate. Note that equation (3) only focuses on the h = 1 horizon in the forecasting model (1),

which was first introduced by Mark (1995). This is due to the fact that equation (3) is a consequence

of the interest parity condition and the Taylor rule, whereas the forecasting equation (1) does not have a

strong theoretical background for higher horizons (h > 1).

As a candidate for wt, we first consider the real exchange rate to assess whether the Taylor rule model

is only partially correct, in other words, whether the coefficients of the variables, other than the price

differentials in the Taylor rule model, are all zero. In such a case, our regressor is

wt = pt − p∗t − st. (4)

Second, we utilize the monetary fundamentals that are often used in the studies of the forecasting model

(1):

wt = (mt −m∗t )− φ (yt − y∗t )− st, (5)

where φ is either 0 or 1.

Our third regressor is the Taylor rule equation with a particular set of parameters,

wt = 0.1 (st + p
∗
t − pt) + 1.5 (πt − π∗t ) + 0.1

¡
yGt − y∗Gt

¢
, (6)

where yGt is the output gap, which measures the percentage deviation of output from its potential level.

Finally, we employ all the variables that are associated with the Taylor rule, namely, the differentials

of inflation rates, output gaps, and the real exchange rate:

wt =

"
πt π∗t yGt y∗Gt pt − p∗t − st

#0
, (7)

which is called the asymmetric Taylor rule model with heterogeneous coefficients by Molodtsova and Papell

(2009).
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2.2 Why Does a Frequency Band Matter? Two Reasons

Our rationale for using the band spectral regression — instead of the time domain regression — stems from the

following two reasons. First, aside from a group of empirical studies that reveal the importance of filtering

or using specific frequencies to uncover the statistically significant link between economic variables, there

is a theoretical reason for us focusing on frequency bands to improve our forecast. Consider that process

y is generated by

yt =

∞X
j=−∞

b0jxt−j + εt,

where {yt, xt} are jointly stationary and E [εtxt−j ] = 0 for all j. Suppose we run a regression assuming

yt =

∞X
j=−∞

b1jxt−j + ut,

where b1j = 0 for some j by assumption. Then, according to Sims (1972) and Sargent (1987), ordinary least

squares (OLS) is equivalent to choosing
n
b1j

o
by solving a minimization problem:

min
{b1j}

Z π

−π

¯̄
b0
¡
e−iω

¢− b1 ¡e−iω¢¯̄2 gx ¡e−iω¢ dω, (8)

where

bk
¡
e−iω

¢
=

∞X
j=−∞

bkj e
−ijω,

for k = 0, 1; and gx
¡
e−iω

¢
is the spectral density of xt. The mean squared error is the integral that is

minimized in (8) plus a constant that corresponds to the variance of εt. Roughly, the (time-domain) OLS

finds coefficients b1j that minimize the distance between the true parameters b
0
j and b

1
j weighted by the

spectral density of xt over all the frequencies, (−π,π).
On the other hand, to consider the band spectral regression following Corbae et al. (2002), suppose

that we allow low frequency band [0,ω0] and high frequency band (ω0,π] to have different coefficients.

More specifically, we assume βA for the low frequency band and βAC for the high frequency band. Then,

we have

b1
¡
e−iω

¢
= βA1(|ω|<ω0) + βAC1(|ω|>ω0),

where 1(z) is an indicator function that takes 1 if z is true and takes 0 otherwise.
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Note that as clarified in the next section, band spectral regression also minimizes the squared residuals.

If our model has the condition that b1j = 0 for all j 6= 0, then it is clear that band spectral regression has two
free parameters to be estimated, while the time domain regression has only one parameter. Hence, excluding

the estimation errors, band spectral regression provides a better forecast than time domain regression.

However, it is not immediately obvious whether band spectral regression yields a better forecast when we

impose a restriction that βAC = 0; that is, we only utilize the low frequency band for our regression. Even

in this case, we can show that band spectral regression beats time domain regression if, for example, xt

is a white noise process (see Online Appendix 1). Intuitively, this is because the time domain regression

fits the model to the data for all frequencies to find a parameter that is constant across frequencies. On

the other hand, band spectral regression allows the parameter to vary, either βA or 0, depending on the

relative importance of frequencies.

The second reason we investigate band spectral regression is that forecasting higher horizons entails

filtering that amplifies low frequency components. To see this, suppose that the first difference of exchange

rate st has a Wold representation:

st − st−1 = C (L) ηt,

where C (L) = 1 + c1L+ c2L
2 + · · · , with P∞

j=1 c
2
j <∞, L is a lag operator, and ηt is a zero-mean white

noise with the variance of σ2η. Then, the forecasting equation for h periods ahead is

st − st−h = A (L) (st − st−1) = A (L)C (L) ηt, (9)

where A (L) = 1+L+L2+ · · ·+Lh−1. Hence, the depreciation rate for h periods is equivalent to applying
a filter A (L) to the exchange rate, and the filter’s transfer function is

¯̄
A
¡
e−iw

¢¯̄2
=

¯̄̄̄
1− e−hiw
1− e−iw

¯̄̄̄2
=
1− cos (hw)
1− cosw .

As Figure 1 clearly shows, a higher h places an extremely large weight on low frequencies and 0 or near 0

weight on high frequencies. Therefore, it is reasonable to utilize only low frequencies to estimate unknown

parameters rather than using all the frequencies — as the time domain regression does— because fitting data

to the model with less important frequencies, that is, high frequencies, may lead to an imprecise estimation
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of the parameters owing to the same argument pertaining to equation (8). This fact does not necessarily

mean that we should remove high frequency components from the data before running a regression or that

high frequency components do not convey useful information for forecasting. However, it is sensible for us

to assume that variables’ forecasting power varies with frequency, especially when high forecasting horizons

are considered.

2.3 The Band Spectral Regression

We follow the notations of Corbae et al. (2002) to describe the band spectral regression model. Let us

assume that the observed exchange rate (in percentage change over time) yt follows

yt = π1 + eyt,
where π1 is an unknown parameter and eyt is a zero-mean stationary process. Let us also assume that the
variables that represent exchange rate fundamentals are a k × 1 vector xt, which follows

xt = Π2 + ext,
where Π2 is a k×1 vector and ext is a zero-mean, k×1 time series. For the relationship between the vectors
stacking eyt and ext, ey and ex, respectively, we suppose that the following equations hold:

AW ey = AW eXβA +AWε (10)

AcW ey = AcW eXβAc +A
cWε, (11)

where W is a matrix5 for the discrete Fourier transform; A is a frequency band selection matrix whose

diagonal entries are either 0 or 1, and the rest of A is zeros; Ac = I−A; and ε is a vector of the error term,

5W = 1√
T



1 1 1 1 1 1

1 e2πi/T e2π2i/T e2π3i/T · · · e2π(T−1)i/T

1 e2π2i/T e2π4i/T e2π6i/T · · · e2π2(T−1)i/T

1 e2π3i/T e2π6i/T e2π9i/T · · · e2π3(T−1)i/T

...
...

...
...

. . .
...

1 e2π(T−1)i/T e2π2(T−1)i/T e2π3(T−1)i/T · · · e2π(T−1)
2i/T
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εt. Further, we assume that εt and the variable ext follow a jointly stationary vector process.6 Equation
(10) states that the coefficient vector on ext is βA when a regression of eyt on ext is applied only for the
frequency band selected by the selection matrix A. For the other bands, as appears in equation (11), the

coefficient vector is βAc . With the inverse Fourier transform we have the time domain representation of

our regression model:

y = π1 +Ψ eXβA + Ψc eXβAc + ε (12)

= π1 −ΨΠ2βA −ΨcΠ2βAc +ΨXβA + ΨcXβAc + ε (13)

= π +ΨXβA + ΨcXβAc + ε (14)

where π is a constant; Ψ and Ψc are matrices for the Fourier and inverse-Fourier transforms of the data.

More specifically,

Ψ =W+AW, Ψc =W+AcW

andW+ is a complex conjugate matrix ofW . It is important to note that one needs to specify the frequency

band prior to applying the band spectral regression. If we assume the significant relation between eyt andext only in the frequency band specified by the selection matrix A, and no such relationship in all the other
frequencies, it is reasonable to set βAc = 0.

2.4 Out-of-Sample Forecast and the Band Spectral Regression

As is explained later, the band spectral regression requires pre-specified frequency bands for which the

regression is carried out in the frequency domain. To this end, we first specify the following three bands

that are commonly used in macroeconomics, namely, high frequency, low frequency, and middle frequency.

We define high frequency bands as (π/2,π) and (π/4,π); low frequency bands as (0,π/2) and (0,π/4);

and middle frequency bands as (π/2− .15π,π/2 + .15π), and the business cycle frequencies as (π/48,π/9).
This classification of frequency bands, except for the business cycle frequencies, is in accordance with a

study by Perron and Yamamoto (2013). Table 1 summarizes the frequency bands used in this study.

6We employ Assumption 1 of Corbae et al. (2002): (εt, xt) is a jointly stationary time series with Wold representation;
and there is no cross spectral for εt and xt.
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Table 1: Frequency Bands

Name Frequencies BMA Model Number

High 1 (π/2,π) 1

High 2 (π/4,π) 2

Low 1 (0,π/2) 3

Low 2 (0,π/4) 4

Middle (π/2− .15π,π/2 + .15π) 5

Business Cycle (π/48,π/9) 6

All (0,π) 7

Our out-of-sample forecasting of exchange rates utilizes the rolling method: First, we divide the whole

sample that has observations from t = 1 to T into two subsamples. (If T is an odd number, (T + 1)/2 is

used as the size of the first subsample.) Then, using the first subsample, which starts at t = 1 and ends

at t = R (here, R = T/2 if T is an even number), we estimate the coefficients for each band specified

above. Let us call this first subsample the estimation sample. Once the parameters are estimated for the

estimation sample, the h−period ahead forecast, which is meant to forecast t = R+h+1, is computed as in
equation (12), by fitting the estimated coefficient to the estimation sample that adds the next observation

(t = R+ 1) to the original estimation sample and drops the oldest observation (t = 1) from it. Note that

the predicted value of the dependent variable at t = R+ h+ 1 appears as the last entry of the estimated

vector by in equation (12). This is different from the method commonly used in forecasting based on a linear
regression model, where the predicted value is computed by multiplying the estimated coefficients by a

single observation of the regressor for t = R + 1. The main reason why we need to utilize the subsample

rather than a single new observation to compute the predicted value is that our band spectral regression

involves both the Fourier and inverse Fourier transforms, as seen in equation (12). Needless to say, the

prediction error utilizing all frequencies (0,π) yields the identical prediction error that would be computed

from the commonly used method.

The prediction error for t = R+h+1 is then defined as the difference between the observed yt and the

predicted value thereof, byt. Hence, the prediction error is et = yt − byt. We repeat the procedure above to
compute the prediction errors from t = R+ h+ 1 to t = T .
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2.5 The Evaluation of Out-of-Sample Forecasting

Since Meese and Rogoff (1983), one way to measure an exchange rate model’s performance is its forecasting

ability, especially in comparison to that of the random walk model. For the purpose of assessing the

performance of exchange rate models relative to the random walk model in the frequency domain, we

employ the ratio of mean squared errors:

MSE ratio =

1
T−R−h

PT
t=R+h+1 e

2
t

1
T−R−h

PT
t=R+h+1 re

2
t

,

where re2t is a square of the prediction error assuming the exchange rate follows the random walk process.

More precisely, in such a case, ret = byt − yt, where yt is the average of yt over the estimation sample.
An MSE ratio greater than one implies that the random walk model better predicts the h-period ahead

exchange rate, and vice versa. Further, it is possible to implement a test of whether the out-of-sample

forecasting of the exchange rate based on the band spectral regression dominates the null of a random walk

process. Given the fact that our alternative hypothesis nests the null hypothesis of the random walk7,

we employ the MSE-F test (e.g., Clark and McCracken, 2013) to test the equal forecast accuracy in the

population. The asymptotic distribution for this test statistic is not standard, and therefore, we compute

the p-values for each test statistic by a fixed regressor bootstrap (Clark and McCracken, 2012).

3 Dealing with Unknown Frequency Bands

The previous section finds that some bands are more important than other bands in discovering the

relationship between dependent and independent variables, as well as in forecasting the dependent variable

that is out-of-sample. However, one problem that arises in practical studies is how to choose the frequency

bands that are utilized in the band spectral regression. Here, we consider two different procedures that

select frequencies in our band spectral regressions. They are Bayesian Model Averaging (BMA) and

LASSO, as explained and assessed in the following subsections.

7Because nested models are tested, a popular accuracy test such as the one proposed by Diebold and Mariano (1995) cannot

be used. To see why our models are nested, note that our model under the alternative is

y = π1 +Ψ (X −Π2)βA +Ψ
c
(X −Π2)βAc + ε,

while the model under the null is

y = π1 + ε.
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3.1 Bayesian Model Averaging (BMA) and the Band Spectral Regression

It is clear from equation (12) that our band spectral regression is a linear regression. Hence, BMA (Fer-

nandez et al., 2001; Magnus et al. 2010, among others) is readily applicable and it can improve our

out-of-sample forecasting. LetMi be a band spectral regression model utilizing frequency band i and let

N be the number of frequency bands under consideration. Since our band spectral regression equation

(14), which uses a specific band i in Table 1 can be regarded as model i (Mi), we can rewrite it as:

ModelMi : y = πi +X2iβi + εi.

For example, model 1 (M1) uses the high frequency band, (π/2,π), and model 3 (M3) uses the low

frequency band, (0,π/2). In this case, the regressor X2,1 is [W
+AWX,W+AcWX], where the diagonal

elements of the selecting matrix A are 1’s only for those corresponding to frequencies between π/2 and

π, and 0’s otherwise. Then, BMA forecast is
PN
i=1 p (Mi|y) byt,i, where p (Mi|y) is the posterior model

probability and byt,i is the forecast based onM1. Here, we employ Zellner’s (1986) g-priors:

p
¡
σ2|Mi

¢ ∝ σ−2, p
¡
π|σ2,Mi

¢ ∝ 1
p
¡
βi|π,σ2,Mi

¢ ∝ ¯̄
σ2V0i

¯̄−1/2
exp

½
−β

0
iV
−1
0i βi
2σ2

¾

where βi =

"
β0A β0Ac

#0
and V −10i = giX2iM1X

0
2i with gi = max

©
T, k2

ª
and M1 = IT − ιι0/T , with

ι = [[1, . . . , 1]0.

Then, the posterior model probability for modelMi is given by

p (Mi|y) = c
µ

gi

1 + gi

¶k2i/2 ¡
y0M1BiM1y

¢−(T−k1)/2 , (15)

where

Bi =
gi

1 + gi
M1 +

1

1 + gi

n
M1 −M1X2i

¡
X 0
2iM1X2i

¢−1
X 0
2iM1

o
and c is a normalizing constant.8 Once the posterior probabilities p (Mi|y) are computed, we proceed to
find the out-of-sample prediction errors.

8See Magnus et al. (2010) for details.
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We also consider the BMA forecast with equal probabilities across all the frequency bands. As is well

known (Morley and Panovska, 2019; Geweke and Amisano, 2011; among others), BMA forecasting with

equal probabilities often outperforms BMA with posterior model probabilities that are computed from

equation (15). We investigate whether the out-of-sample forecasting of exchange rates exhibits a similar

tendency.

3.2 LASSO for Band Spectral Regression

3.2.1 The Set up for LASSO

In the previous section, BMA requires prespecified frequency bands, and then a researcher can assess the

relative importance of each band. Here, we propose utilizing the LASSO regression (Tibshirani, 1996)

to search for the frequencies over which a regression is applied, without prespecifying frequency bands.

Originally, LASSO was designed to deal with big data and a fairly large number of unknown parameters

(coefficients) that are expected to be zero. Because we need to shut down irrelevant frequencies in the

spirit of the band spectral regression, as the selection matrix A has many zeros, LASSO is suitable for

this problem. The question here is, more precisely, “How good would an out-of-sample forecast be if one

were allowed to use ‘some’ frequencies?” Once the means of y and X are subtracted from those variables9

and renamed as yc and Xc, respectively, our model (provided that βAc = 0) can be estimated from the

following regression:

yc = ΨXcβA + uc

= P ζ + uc, (16)

where the matrix P consists of the data and known parameters and the vector ζ consists of βA and the

diagonal elements of A. In equation (16), we specify P as a T × T 2k matrix and ζ as T 2k × 1. Here,
our goal is to estimate the unknown parameter vector βA and the diagonal elements of A. While they are

not identified separately, we are able to find the vector ζ that minimizes the mean squared error of the

out-of-sample forecast.

9Note, as pointed out by Corbae (2002), that time domain detrending does not lead to a biased estimator when the only

deterministic term in the model is an intercept.
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This specification, (16), and the fact that ζ is a vector with most of its elements (possibly) being zeros,

leads us to the following LASSO problem to estimate the unknown parameter vector ζ:

bζL = argmin (yc − P ζ)0 (yc − P ζ)− λ kζk , (17)

where kζk is the L-1 norm for a T 2k × 1 vector ζ, i.e., kζk =PT 2k
i=1 |ζi|.

3.2.2 Searching for λ That Minimizes the MSE Ratio

To implement LASSO, we employ the MATLAB command “lasso” to compute bζL. The only unknown
parameter in the minimization problem (17) is λ, which is often called a penalty parameter that is needed

for “lasso.” Often, cross-validation is utilized for selecting λ. We, too, select λ in a way that minimizes

the mean squared prediction errors (i.e., the best out-of-sample forecast is made at the selected value of

λ) relative to that of the random walk model. To this end, we compute the MSE ratio for a given λ. For

each value of λ, the rolling window is applied and then the MSE ratio is computed. We repeat for different

values of λ, such as λ1,λ2, . . . ,λM ; and then we choose λ that is the lowest value among (λ1,λ2, . . . ,λM)

that minimizes the MSE ratio and denote λ∗. Note that the frequencies chosen to compute the MSE ratio

vary across rolling windows even if the hyper parameter λ is fixed across the rolling window.10

It is important to keep in mind that bζL becomes a vector of zeros if a large number is chosen as the
penalty parameter, λ. In such a case, the out-of-sample forecast from the LASSO becomes the mean value

of y in the estimation subsample, resulting in the MSE ratio becoming 1 because the out-of-sample forecast

of a random walk model is simply the average of the depreciation rate.

Because λ is not allowed to vary across rolling windows, one practical use of this setup is to take the

λ∗ in this study and apply it toward forecasting future exchange rates that have not been observed as of

10Similar to the band spectral regression, an out-of-sample forecast is computed by the rolling method: Once ζL is found
in the estimation sample for a given λ, the estimation sample is added to a new observation, and the oldest observation is

subtracted to find the fitted value vector yc, whose last entry becomes the out-of-sample forecast after being adjusted for the
intercept. More precisely, the vector of the out-of-sample forecast for the demeaned process yc is

yc = PζL.
Then, y = k + yc
where k = y − yc,
and y and yc are the averages of y and yc, respectively. Those averages are computed over the estimation subsample.
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yet.

3.2.3 The Estimation of Relevant Frequencies

Once we find a λ that minimizes the MSE ratio, we are able to estimate the selecting matrix A. To this

end, we utilize the well-known fact (e.g., Engle, 1964) that for βA to be a vector of real numbers, both

π + h and π − h should be included in the regression. Hence, it is possible that we specify our LASSO
regression differently so that the size of P is T × (T + 1) k/2 when T is odd and T × (T + 2) k/2 when T
is even. However, this specification does not allow us to clearly find the λ that minimizes the MSE ratio

because such a specification does not fit the LASSO regression, which has a greater number of regressors

than the sample size. For details, see Online Appendix 2.

Then, it is determined that the product of the i-th coefficient, βA, and j-th frequency, Ajj , is zero if the

corresponding element of bζL is less than 1e-5. Note that our focus here is not to determine whether Ajj is
one but to find relevant frequencies for the out-of-sample forecast. Because bζL is estimated for each rolling
window, we shall plot the estimated A for each frequency and time (rolling window) in order to show how

relevant frequencies change over time. The averages of the estimated A over time (rolling window) will

also be displayed. For more details, see Online Appendix 2.

4 Empirical Results

4.1 Data

Our data are an extended version of those used by Molodtsova and Papell (2009), taken from the Interna-

tional Financial Statistics by the International Monetary Fund. They are monthly data from March, 1973

through February, 2017, and we utilize the data for the US, Canada, Japan, Switzerland, the UK, and

Australia. As in Molodtsova and Papell (2009), each exchange rate is the local currency price of the US

dollar. The data on industrial production indexes are used for output gaps (yGt ). To obtain y
G
t , we follow

Molodtsova and Papell (2009) and use the following three detrending methods: (1) a linear time trend,

(2) a quadratic trend, and (3) the Hodrick and Prescott (1997, hereafter, HP) filter with a smoothing

parameter of 14,400 that is applied to the data up to t− 1. For mt and pt, we use the M1 and consumer

price index data, respectively. See Appendix 1 for more details.
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4.2 The Band Spectral Regression

4.2.1 The Models

We apply the band spectral regression for equation (3) with three different sets of variables for the regressor

wt: PPP (equation 4), Monetary (equation 5 with φ = 0 and 1 and we call them Money 0 and Money 1,

respectively), the Taylor rule with a fixed set of coefficients (denoted hereafter “fixed”; equation 6) and the

heterogeneous Taylor rule (denoted hereafter “hetero”; equation 7). For the Taylor rule model, our output

gaps are derived from three different detrending methods, namely, linear detrending, quadratic detrend-

ing, and HP detrending. Therefore, both the fixed coefficients Taylor rule model and the heterogeneous

coefficients Taylor rule model have three variations. We also apply the band spectral regression for Mark’s

empirical model (1) with the PPP and monetary fundamentals for h = 6, 12, and 24. Table 2 summarizes

the models and their equation numbers. In all cases, we find the MSE ratios for the model that imposes

βAc = 0 (restricted, and are denoted “R” in Tables 3 through 11), and the model without such a restriction

(unrestricted , and are denoted “U” in Tables 3 through 11).

Table 2: The Summary of Models

Equation Forecasting Horizon: h = 1

(4) PPP

(5) Money 0 (φ = 0) Money 1 (φ = 1)

(6) Taylor, fixed, linear detrend Taylor, fixed, quadratic detrend Taylor, fixed, HP detrend

(7) Taylor, hetero, linear detrend Taylor, hetero, quadratic detrend Taylor, hetero, HP detrend

Forecasting Horizon: h = 6, 12, and 24

(4) PPP

(5) Money 0 (φ = 0) Money 1 (φ = 1)

4.2.2 The Comparison of the Models for h=1

Tables 3, 4, and 5 demonstrate the MSE ratios associated with the band spectral regression of (3) for each

of the exchange rate models. The MSE ratios are tabulated for each frequency band, and the last row

shows the MSE ratio for each model utilizing all frequencies. Hence, those numbers appearing in the last

row are the MSE ratios for regular linear (time domain) regressions. Numbers in bold font indicate that

Clark and McCracken’s (2012) test rejects the null hypothesis of predictability equal to the random walk

model at the 5% significance level.
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From the results presented in Table 3, we find that PPP works only for the Swiss franc and the Japanese

yen. For the latter, the superiority of the PPP model, relative to the random walk model, is confirmed for

all frequencies, meaning that the time domain regression can yield such a forecast. Hence, we do not have

a strong reason to use the band spectral regression. Table 4 suggests that M0 outperforms the random

walk model for Canada and Australia, in the business cycle frequencies, whereas M1 beats the random

walk model for Canada, Japan, the UK, and Australia in the business cycle frequencies.

When the Taylor rule fundamentals are employed, as shown in Table 5, the out-of-sample forecast

becomes a little better. With a set of fixed coefficients, regressions within low frequencies are found to

work well for Canada and Australia, and regressions within business cycle frequencies perform well for

Switzerland and Australia. However, for those two countries, we have to conclude that the time domain

regression can forecast future exchange rates as well (except for the model detrended by the HP filter).

According to Table 5, allowing the coefficients of the Taylor rule to be free parameters to be estimated,

does not result in more rejections. This means that making the Taylor rule more flexible in terms of its

coefficients does not improve the accuracy of the out-of-sample forecast.

Given the results provided here, we proceed to investigate the following models’ forecasting power for

longer forecasting horizons. They are: PPP fundamentals and monetary fundamentals with φ = 1.

Table 3: MSE Ratios for the PPP Model

Frequency Band Canada Japan Switzerland UK Australia

R U R U R U R U R U

High 1 2.658 2.660 4.681 4.598 5.554 5.561 4.829 4.895 4.003 4.010

High 2 2.529 2.518 4.139 4.039 4.572 4.518 4.506 4.466 3.604 3.560

Low 1 1.001 2.653 1.007 4.630 0.993 5.513 1.006 4.962 1.004 3.985

Low 2 1.002 2.533 1.008 4.089 0.998 4.714 1.005 4.528 1.005 3.646

Middle 1.294 1.301 1.556 1.540 1.740 1.771 1.766 1.836 1.445 1.456

Business Cycle 1.002 1.003 1.003 0.984 1.005 0.985 1.025 1.042 1.009 1.007

All 1.001 1.001 1.005 1.005 0.992 0.992 1.011 1.011 1.002 1.002

Notes: 1) The names in the “Frequency Band”columns correspond to those in Table 1. For example, “High 1”is

(π/2,π). 2) The values in the “R”columns are MSE ratios from the restricted model, imposing βAc = 0; and The

values in the “U”columns are MSE ratios from the unrestricted model, without imposing βAc = 0. 3) The numbers

in bold indicate that the MSE-F test rejects the null hypothesis of the equal predictability at the 5 % significance

level. See Online Appendix 3 for more details.
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Table 4: MSE Ratios for the Monetary Models

Frequency Band Canada Japan Switzerland UK Australia

R U R U R U R U R U

M0

High 1 1.158 1.503 1.688 1.815 2.793 2.867 2.729 2.707 2.409 2.455

High 2 1.842 1.772 1.985 2.094 4.133 4.147 3.393 3.304 3.018 3.054

Low 1 1.006 1.491 1.002 1.815 1.000 2.835 1.012 2.707 1.002 2.445

Low 2 1.004 1.803 1.000 2.128 1.000 4.147 1.014 3.304 1.001 3.033

Middle 1.206 1.155 1.320 1.468 1.960 2.031 1.721 1.738 1.406 1.431

Business Cycle 0.987 1.010 1.007 1.006 1.003 1.020 0.999 1.003 0.992 0.989

All 1.013 1.013 1.018 1.018 1.013 1.013 1.013 1.013 1.006 1.006

M1

High 1 1.292 1.249 1.511 1.626 2.822 2.905 2.135 2.187 2.219 2.275

High 2 1.479 1.440 1.771 1.887 4.199 4.224 2.863 2.855 2.793 2.838

Low 1 1.006 1.217 1.001 1.625 0.998 2.866 1.029 2.187 1.004 2.259

Low 2 1.003 1.457 1.001 1.902 0.999 4.224 1.028 2.855 1.002 2.788

Middle 1.136 1.107 1.201 1.337 1.959 2.038 1.548 1.616 1.341 1.373

Business Cycle 0.988 1.007 1.008 0.996 1.000 1.017 0.993 1.019 0.989 0.987

All 1.012 1.012 1.015 1.015 1.010 1.010 1.036 1.036 1.007 1.007

Notes: 1) The names in the “Frequency Band”columns correspond to those in Table 1. For example, “High 1”is

(π/2,π). 2) The values in the “R”columns are MSE ratios from the restricted model, imposing βAc = 0; and The

values in the “U”columns are MSE ratios from the unrestricted model, without imposing βAc = 0. 3) The numbers

in bold indicate that the MSE-F test rejects the null hypothesis of the equal predictability at the 5 % significance

level. See Online Appendix 3 for more details.
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Table 5: MSE Ratios for Taylor Rule Models with Fixed Coefficients

Frequency Band Canada Japan Switzerland UK Australia

R U R U R U R U R U

Linear Detrending

High 1 1.067 1.075 1.258 1.263 1.960 1.941 1.431 1.473 1.682 1.673

High 2 1.282 1.281 1.149 1.136 2.466 2.379 1.640 1.640 1.304 1.279

Low 1 0.988 1.075 1.009 1.260 0.992 1.923 1.005 1.435 0.987 1.668

Low 2 0.988 1.299 1.010 1.218 1.002 2.409 1.004 1.733 0.991 1.272

Middle 1.107 1.124 1.011 1.024 1.216 1.230 1.337 1.397 1.101 1.100

Business Cycle 1.001 0.991 1.004 0.998 1.031 0.971 1.043 1.056 1.012 0.986

All 0.995 0.995 1.006 1.006 0.975 0.975 1.015 1.015 0.982 0.982

Quadratic Detrending

High 1 1.066 1.072 1.269 1.277 1.958 1.944 1.456 1.504 1.682 1.671

High 2 1.285 1.282 1.170 1.160 2.458 2.376 1.655 1.656 1.302 1.275

Low 1 0.988 1.072 1.009 1.272 0.990 1.925 1.008 1.466 0.986 1.665

Low 2 0.988 1.300 1.009 1.238 1.000 2.410 1.007 1.759 0.990 1.268

Middle 1.106 1.122 1.015 1.029 1.216 1.231 1.337 1.399 1.100 1.098

Business Cycle 1.002 0.992 1.003 0.997 1.031 0.972 1.046 1.055 1.012 0.986

All 0.995 0.995 1.007 1.007 0.973 0.973 1.019 1.019 0.981 0.981

HP Detrending

High 1 1.045 1.052 1.280 1.280 2.023 2.032 1.417 1.454 1.701 1.701

High 2 1.221 1.222 1.178 1.159 2.529 2.464 1.608 1.597 1.314 1.298

Low 1 0.989 1.052 1.008 1.274 1.001 2.012 1.005 1.418 0.991 1.694

Low 2 0.991 1.238 1.007 1.240 1.007 2.505 1.004 1.691 0.994 1.292

Middle 1.083 1.097 1.021 1.030 1.242 1.274 1.319 1.371 1.106 1.111

Business Cycle 1.007 0.997 1.007 1.039 1.027 0.990 1.042 1.049 1.013 0.992

All 0.995 0.995 1.005 1.005 0.990 0.990 1.015 1.015 0.987 0.987

Notes: 1) The names in the “Frequency Band”columns correspond to those in Table 1. For example, “High 1”is

(π/2,π). 2) The values in the “R”columns are MSE ratios from the restricted model, imposing βAc = 0; and The

values in the “U”columns are MSE ratios from the unrestricted model, without imposing βAc = 0. 3) The numbers

in bold indicate that the MSE-F test rejects the null hypothesis of the equal predictability at the 5 % significance

level. See Online Appendix 3 for more details.
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Table 6: The MSE Ratios for the Taylor Rule Models with Heterogenous Coefficients

Frequency Band Canada Japan Switzerland UK Australia

R U R U R U R U R U

Linear Detrending

High 1 1.720 1.765 2.143 2.161 1.990 1.947 1.909 2.024 1.503 1.487

High 2 1.557 1.563 1.811 1.859 2.288 2.174 1.753 1.784 1.439 1.358

Low 1 1.037 1.779 1.039 2.170 1.037 1.942 1.123 2.084 1.026 1.481

Low 2 1.035 1.555 1.038 1.825 1.041 2.166 1.127 1.843 1.040 1.378

Middle 1.156 1.187 1.172 1.209 1.236 1.227 1.230 1.357 1.086 1.049

Business Cycle 1.026 1.075 1.001 1.252 1.045 1.447 1.121 1.438 1.059 1.416

All 1.036 1.036 1.054 1.054 1.040 1.040 1.134 1.134 1.029 1.029

Quadratic Detrending

High 1 1.611 1.624 1.949 1.958 2.106 2.076 1.625 1.698 1.471 1.463

High 2 1.495 1.479 1.781 1.807 2.345 2.285 1.504 1.538 1.335 1.297

Low 1 1.036 1.640 1.036 1.964 1.031 2.072 1.109 1.747 1.015 1.459

Low 2 1.034 1.472 1.034 1.780 1.037 2.209 1.120 1.579 1.027 1.342

Middle 1.162 1.173 1.155 1.181 1.249 1.241 1.188 1.310 1.106 1.077

Business Cycle 1.036 1.053 0.998 1.283 1.037 1.249 1.115 1.420 1.061 1.329

All 1.026 1.026 1.054 1.054 1.015 1.015 1.111 1.111 1.019 1.019

HP Detrending

High 1 1.942 1.920 3.100 3.119 2.907 2.994 2.544 2.762 1.659 1.525

High 2 1.858 1.842 2.969 2.957 2.984 3.045 2.414 2.489 1.625 1.504

Low 1 0.981 1.931 1.060 3.134 1.019 2.989 1.020 2.828 0.981 1.518

Low 2 0.987 1.832 1.051 2.916 1.025 3.049 1.016 2.549 1.007 1.545

Middle 1.215 1.241 1.371 1.438 1.372 1.461 1.416 1.607 1.141 1.064

Business Cycle 1.001 1.036 1.013 1.134 1.012 1.165 1.080 1.314 1.067 1.169

All 1.015 1.015 1.084 1.084 1.031 1.031 1.091 1.091 0.980 0.980

Notes: 1) The names in the “Frequency Band”columns correspond to those in Table 1. For example, “High 1”is

(π/2,π). 2) The values in the “R”columns are MSE ratios from the restricted model, imposing βAc = 0; and The

values in the “U”columns are MSE ratios from the unrestricted model, without imposing βAc = 0. 3) The numbers

in bold indicate that the MSE-F test rejects the null hypothesis of the equal predictability at the 5 % significance

level. See Online Appendix 3 for more details.

4.2.3 Longer Horizon Forecasts

As is clear from Table 7, 8, and 9, the MSE ratio generally declines as the forecasting horizon (h) increases.

Interestingly, however, this tendency does not necessarily mean that the accuracy of the forecast improves

with h. As shown in Table 8, the monetary fundamentals model has fewer rejections in h =24 than in

h =6 or 12. Conversely, the PPP fundamentals model (Table 7) performs reasonably well for higher h. In
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fact, the model beats the random walk model in the business cycle frequencies for all exchange rates when

h = 24. In addition, the PPP fundamentals model works particularly well for Japan and the UK. For those

two countries, even high frequencies yield significantly better-than-random walk forecasts, despite the fact

that filtering associated with computing 24-month ahead forecast — shown in equation (9) — leaves only

a small power spectrum for high frequencies. Interestingly, for those cases, the time domain regression

also provides statistically significant forecasts. It indicates that almost all frequencies are so important for

forecasting those exchange rates that even the band spectral regression assessing each band separately can

confirm significant forecasts. On the contrary, the time domain regression cannot beat the random walk

model but the business cycle can do so for Canada, Japan, Switzerland, and Australia with h = 12, and

for Canada, Switzerland, and Australia with h = 24. Here, we confirm the usefulness of the band spectral

regression for the purpose of out-of-sample forecasting.

When the monetary fundamentals model is considered in Table 8, the 6-month ahead Australian dollar

can be forecast for any of the frequency bands except for the “all” frequencies, meaning that the time

domain forecast is inferior to the band spectral regression. However, such forecasting power declines when

h=12 or 24. It is worth noting that there is some evidence that the business cycle frequencies are important

for the UK and Australia when h = 12 (and when h = 24 for Australia), and that the significance of business

cycle frequencies is affirmed by the band spectral regression; the time domain regression cannot outperform

the random walk model.
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Table 7: MSE Ratios for the PPP Model with h=6, 12 and 24

Frequency Band Canada Japan Switzerland UK Australia

R U R U R U R U R U

h=6

High 1 0.941 0.934 0.880 0.862 0.920 0.922 0.937 0.783 0.901 0.879

High 2 0.907 0.906 0.828 0.813 0.915 0.952 0.911 0.778 0.923 0.933

Low 1 1.000 0.934 0.978 0.862 1.010 0.922 0.841 0.783 0.977 0.879

Low 2 1.003 0.906 0.972 0.813 1.019 0.952 0.858 0.778 0.979 0.933

Middle 0.976 0.972 0.916 0.916 0.971 0.976 0.978 0.818 0.958 0.937

Business Cycle 0.999 1.010 0.942 1.001 0.951 0.976 0.899 0.939 1.013 1.069

All 0.998 0.998 1.012 1.012 1.018 1.018 0.845 0.845 1.001 1.001

h=12

High 1 0.978 0.926 0.847 0.784 0.978 0.952 1.029 0.696 0.912 0.761

High 2 0.878 0.862 0.879 0.813 0.877 0.950 0.854 0.631 0.918 0.898

Low 1 0.976 0.926 0.935 0.784 1.014 0.952 0.693 0.696 0.907 0.761

Low 2 0.979 0.862 0.916 0.813 1.045 0.950 0.755 0.631 0.897 0.898

Middle 0.953 0.931 0.929 0.914 0.936 0.969 0.940 0.655 0.948 0.901

Business Cycle 0.782 0.814 0.675 0.749 0.774 0.777 0.639 0.599 0.704 0.816

All 0.980 0.980 1.016 1.016 1.018 1.018 0.672 0.672 0.979 0.979

h=24

High 1 0.940 0.851 0.819 0.656 0.943 0.859 0.931 0.584 0.907 0.729

High 2 0.885 0.822 0.777 0.629 0.837 0.816 0.724 0.539 0.884 0.778

Low 1 0.931 0.853 0.796 0.658 0.938 0.861 0.636 0.581 0.819 0.731

Low 2 0.923 0.822 0.814 0.629 1.005 0.816 0.794 0.539 0.801 0.778

Middle 0.956 0.917 0.898 0.748 0.922 0.862 0.881 0.507 0.948 0.873

Business Cycle 0.642 0.755 0.499 0.571 0.509 0.444 0.628 0.465 0.517 0.666

All 0.973 0.973 0.840 0.840 0.900 0.900 0.502 0.502 0.942 0.942

Notes: 1) The names in the “Frequency Band”columns correspond to those in Table 1. For example, “High 1”is

(π/2,π). 2) The values in the “R”columns are MSE ratios from the restricted model, imposing βAc = 0; and The

values in the “U”columns are MSE ratios from the unrestricted model, without imposing βAc = 0. 3) The numbers

in bold indicate that the MSE-F test rejects the null hypothesis of the equal predictability at the 5 % significance

level. See Online Appendix 3 for more details.
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Table 8: MSE Ratios for the M0 Model with h=6, 12 and 24

Frequency Band Canada Japan Switzerland UK Australia

R U R U R U R U R U

h=6

High 1 0.665 0.673 0.884 0.910 0.837 0.851 0.922 0.943 0.673 0.649

High 2 0.552 0.547 0.824 0.842 0.822 0.844 0.893 0.934 0.582 0.576

Low 1 0.973 0.673 1.012 0.910 1.023 0.851 1.013 0.928 0.963 0.649

Low 2 0.972 0.547 1.009 0.842 1.019 0.844 1.013 0.934 0.968 0.576

Middle 0.805 0.805 0.883 0.912 0.907 0.904 0.949 0.980 0.802 0.775

Business Cycle 0.978 1.043 1.067 1.073 0.970 1.253 1.038 1.072 0.936 0.909

All 1.008 1.008 1.032 1.032 1.053 1.053 1.021 1.021 0.965 0.965

h=12

High 1 0.671 0.617 0.837 0.900 0.763 0.801 0.960 0.923 0.699 0.638

High 2 0.569 0.544 0.854 0.885 0.727 0.828 1.007 1.052 0.639 0.623

Low 1 0.920 0.617 1.029 0.900 1.081 0.801 0.986 0.923 0.916 0.638

Low 2 0.912 0.544 1.016 0.885 1.060 0.828 0.977 1.052 0.923 0.623

Middle 0.807 0.791 0.896 0.949 0.836 0.960 0.991 1.020 0.804 0.758

Business Cycle 0.971 1.143 1.049 1.033 0.879 1.383 0.797 0.811 0.820 0.842

All 0.999 0.999 1.071 1.071 1.186 1.186 1.030 1.030 0.931 0.931

h=24

High 1 0.672 0.592 0.784 0.811 0.754 0.966 0.958 0.754 0.675 0.550

High 2 0.562 0.495 0.733 0.733 0.642 0.847 0.918 0.789 0.564 0.478

Low 1 0.818 0.589 0.988 0.810 1.265 0.966 0.794 0.754 0.823 0.550

Low 2 0.787 0.495 0.964 0.733 1.225 0.847 0.796 0.789 0.833 0.478

Middle 0.801 0.788 0.855 0.888 0.824 1.187 0.962 0.832 0.785 0.683

Business Cycle 0.887 1.244 1.075 1.134 0.921 1.944 1.005 1.495 0.629 0.702

All 1.011 1.011 1.060 1.060 1.495 1.495 0.850 0.850 0.861 0.861

Notes: 1) The names in the “Frequency Band”columns correspond to those in Table 1. For example, “High 1”is

(π/2,π). 2) The values in the “R”columns are MSE ratios from the restricted model, imposing βAc = 0; and The

values in the “U”columns are MSE ratios from the unrestricted model, without imposing βAc = 0. 3) The numbers

in bold indicate that the MSE-F test rejects the null hypothesis of the equal predictability at the 5 % significance

level. See Online Appendix 3 for more details.
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Table 9: MSE Ratios for the M1 Model with h=6, 12 and 24

Frequency Band Canada Japan Switzerland UK Australia

R U R U R U R U R U

h=6

High 1 0.658 0.659 0.864 0.899 0.821 0.844 0.968 1.006 0.669 0.652

High 2 0.543 0.537 0.796 0.826 0.816 0.842 0.993 1.047 0.578 0.576

Low 1 0.975 0.659 1.020 0.899 1.040 0.844 1.023 1.003 0.972 0.652

Low 2 0.975 0.537 1.016 0.826 1.031 0.842 1.025 1.047 0.976 0.576

Middle 0.801 0.799 0.866 0.907 0.893 0.911 0.987 1.029 0.799 0.781

Business Cycle 0.979 1.033 1.067 1.064 0.985 1.334 1.011 1.037 0.940 0.919

All 1.003 1.003 1.043 1.043 1.078 1.078 1.027 1.027 0.974 0.974

h=12

High 1 0.660 0.605 0.817 0.916 0.740 0.818 1.001 0.999 0.691 0.649

High 2 0.564 0.531 0.818 0.886 0.720 0.841 1.091 1.169 0.636 0.626

Low 1 0.925 0.605 1.068 0.916 1.135 0.818 1.001 0.999 0.933 0.649

Low 2 0.919 0.531 1.050 0.886 1.099 0.841 0.997 1.169 0.939 0.626

Middle 0.802 0.776 0.878 0.972 0.820 0.994 1.025 1.073 0.804 0.771

Business Cycle 0.969 1.135 1.062 1.020 0.894 1.532 0.810 0.800 0.843 0.859

All 0.989 0.989 1.121 1.121 1.267 1.267 1.033 1.033 0.946 0.946

h=24

High 1 0.676 0.601 0.750 0.857 0.721 1.029 0.967 0.811 0.668 0.556

High 2 0.567 0.504 0.685 0.763 0.612 0.863 0.954 0.883 0.567 0.483

Low 1 0.842 0.602 1.071 0.856 1.392 1.029 0.802 0.811 0.833 0.557

Low 2 0.818 0.504 1.034 0.763 1.319 0.863 0.822 0.883 0.844 0.483

Middle 0.800 0.781 0.827 0.953 0.802 1.290 0.968 0.851 0.785 0.686

Business Cycle 0.880 1.257 1.071 1.134 0.882 2.096 0.928 1.017 0.641 0.692

All 0.998 0.998 1.170 1.170 1.697 1.697 0.817 0.817 0.860 0.860

Notes: 1) The names in the “Frequency Band”columns correspond to those in Table 1. For example, “High 1”is

(π/2,π). 2) The values in the “R”columns are MSE ratios from the restricted model, imposing βAc = 0; and The

values in the “U”columns are MSE ratios from the unrestricted model, without imposing βAc = 0. 3) The numbers

in bold indicate that the MSE-F test rejects the null hypothesis of the equal predictability at the 5 % significance

level. See Online Appendix 3 for more details.

4.2.4 Is Band Spectral Regression Data Snooping?

It is possible that we find a rejection of the null hypothesis of a better forecast than the random walk

model at the 5% level by chance because we repeatedly test the null hypothesis over different frequency

bands and different models. This is often called data snooping or data mining (see White, 2000). This is

another reason why we use fixed regressor bootstrapping.
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4.3 Bayesian Model Averaging (BMA)

4.3.1 The Comparison of Three Models for h=1 with BMA

Given the results of band spectral regressions, we limit ourselves to considering the following models to see

whether BMA improves the accuracy of out-of-sample forecasts and find out which frequency bands are

relatively important in forecasting the future exchange rate. The models considered are: the PPP model,

the monetary model with φ = 1 (M1), and the Taylor rule model with fixed coefficients plus output gaps

derived from quadratic detrending.

Since the posterior model probabilities are computed for each rolling window, we display the average

of the posterior model probabilities over the forecasting windows in Figure 2. With posterior probabilities

in hand, we are able to assess whether the out-of-sample forecast improves due to model averaging. We

present the MSE ratios from BMA in Table 9. A bold number indicates that the MSE ratio is lower than

any of the corresponding currency’s MSE ratios found in the fixed band spectral regression in Subsection

4.2.1. Two things are clear from the comparison of these three models. First, for all cases, the MSE

ratio of BMA with equal weights (probabilities) is always smaller than that with posterior probabilities.

Second, such an observation may not be relevant because only one case (the Taylor rule model for Japan)

outperforms the fixed band spectral regression.

Table 10: MSE Ratios of Bayesian Model Averaging using p (Mi|y) and Equal Weights for h=1
Model Canada Japan Switzerland UK Australia

R U R U R U R U R U

p (Mi|y)
PPP (h=1) 1.344 2.599 1.557 4.412 1.944 4.916 1.872 4.510 1.693 3.640

Monetary (h=1) 1.027 1.173 1.049 1.418 1.808 3.668 1.409 2.550 1.613 2.542

Taylor (h=1) 1.040 1.209 1.006 1.175 1.318 2.325 1.177 1.440 1.103 1.420

Equal Weights (1/7)

PPP (h=1) 1.086 1.628 1.338 2.266 1.446 2.620 1.413 2.543 1.288 2.087

Monetary (h=1) 0.999 1.076 1.026 1.285 1.353 2.115 1.207 1.681 1.185 1.620

Taylor (h=1) 1.024 1.084 0.989 1.070 1.086 1.444 1.101 1.302 1.040 1.159

Notes: 1) The values in the “R”columns are MSE ratios from the restricted model, imposing βAc = 0; and The values

in the “U”columns are MSE ratios from the unrestricted model, without imposing βAc = 0. 2) The bold number

indicates that the MSE ratio is lower than any of the corresponding currency’s MSE ratios found in the fixed band

spectral regression in Subsection 4.2.1.
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4.3.2 Longer Horizon Forecast with BMA

Posterior probabilities for higher h (6, 12, and 24 month-ahead forecasts) reveal quite interesting features.

As h increases, the probabilities for the business cycle frequencies become larger, as well as those for

the entire frequency bands. In the case of the PPP fundamentals displayed in Figure 3, the probability

of the business cycle frequencies is approaching 1 for Switzerland, and greater than 0.9 for Canada and

Japan when h = 24. However, such a phenomenon is more moderate when the monetary fundamentals are

considered, yet the business cycle frequencies carry the highest probabilities for all countries when h = 12

and 24 (see Figure 4).

As Table 11 shows, the MSE ratio from BMA is promising for the PPP fundamentals model, while the

monetary fundamentals model does not perform well, regardless of how the probabilities are computed (i.e.,

either the posterior model probability or equal weight). When PPP fundamentals are used, forecasts with

the posterior probability (p (Mi|y)) have lower MSE ratios compared to forecasts with the equal weight
for h = 12 and 24. However, this tendency is less clear when h = 6.

In addition, all the (bold number) cases where BMA beats the fixed band regression (shown in Table

7) are BMA with posterior probabilities, not with equal probabilities — except for one case of the monetary

fundamentals model, which overall performs poorly throughout this BMA exercise.
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Table 11: The MSE Ratios of Bayesian Model Averaging using p (Mi|y) and Equal Weights
Model Canada Japan Switzerland UK Australia

R U R U R U R U R U

p (Mi|y)
PPP (h=6) 0.999 0.967 0.984 0.970 0.973 0.986 0.840 0.857 0.980 1.011

PPP (h=12) 0.794 0.782 0.698 0.748 0.765 0.771 0.656 0.603 0.767 0.799

PPP (h=24) 0.656 0.742 0.510 0.560 0.509 0.444 0.562 0.447 0.587 0.624

Monetary (h=6) 0.939 0.918 1.032 1.024 0.956 1.164 1.023 1.034 0.817 0.711

Monetary (h=12) 0.949 1.089 1.051 1.004 1.019 1.224 0.828 0.803 0.804 0.795

Monetary (h=24) 0.896 1.209 1.070 1.108 1.118 1.614 0.972 1.018 0.609 0.669

Equal Weights (1/7)

PPP (h=6) 0.962 0.941 0.916 0.884 0.946 0.945 0.871 0.802 0.940 0.935

PPP (h=12) 0.901 0.879 0.836 0.797 0.863 0.876 0.719 0.613 0.837 0.834

PPP (h=24) 0.846 0.835 0.698 0.631 0.722 0.729 0.627 0.501 0.746 0.762

Monetary (h=6) 0.827 0.728 0.921 0.890 0.895 0.889 0.981 1.009 0.811 0.700

Monetary (h=12) 0.792 0.706 0.931 0.919 0.876 0.941 0.937 0.995 0.794 0.703

Monetary (h=24) 0.732 0.709 0.899 0.886 0.934 1.173 0.813 0.790 0.701 0.595

Notes: 1) The values in the “R”columns are MSE ratios from the restricted model, imposing βAc = 0; and The values

in the “U”columns are MSE ratios from the unrestricted model, without imposing βAc = 0. 2) The bold number

indicates that the MSE ratio is lower than any of the corresponding currency’s MSE ratios found in the fixed band

spectral regression in Subsection 4.2.1.

Given the fact that bold numbers indicate that BMA is useful for those cases (currencies), we should

look at the figures of the average posterior probabilities for those cases again. As displayed in Figure 3

(and Figure 4 for the single case), clearly, the business cycle frequencies are the key to making better

out-of-sample forecasts.

For BMA with higher h, we conclude that BMA improves the accuracy of the forecast using the PPP

fundamentals, and the business cycle frequencies are particularly useful in forecasting the future exchange

rate. However, the monetary fundamentals model performs poorly, and hence, we are not certain as to

which frequency band is more helpful in increasing the accuracy of the forecast.

4.4 The LASSO Regression

4.4.1 Three Models for h=1 with LASSO

What does LASSO tell us about the exchange rate models? First, let us determine whether the MSE ratio

computed by LASSO is smaller than any of the MSE ratios that are found in the band spectral regression
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in Tables 3, 4, and 6. As graphic examples, Figure 5 and Figure 6 (for h = 6) demonstrate that the MSE

ratio can be less than 1 if λ is selected appropriately. Not surprisingly, each country has a different λ that

minimizes the MSE ratio.

MSE ratios are presented in Table 12. With the help of LASSO, the PPP fundamental model improves

the accuracy of out-of-sample forecasts for all exchange rates. Both monetary fundamentals and Taylor

rule models somewhat succeed in gaining higher accuracy compared to the fixed band spectral regressions.

Table 12: Minimum MSE Ratios for h=1

Model Canada Japan Switzerland UK Australia

PPP 0.991 1.000 0.978 0.993 0.992

Monetary (φ = 1) 0.991 0.992 1.000 0.944 0.993

Taylor (Fixed coefficients, Detrend 2) 0.991 0.967 0.979 1.000 0.972

Note: The numbers in bold indicate that the MSE ratio is lower than any of the corresponding currency’s MSE ratios

found in the fixed band spectral regression in Subsection 4.2.1.

Note, once again, that the MSE ratio computed from LASSO has an upper bound of 1 because a

sufficiently large λ renders all elements of A zero, making the model (16) equivalent to the random walk

model. Here, we only present the estimated A (both for the average over the rolling windows and for each

rolling window) for those that outperform the fixed band spectral regression (i.e., cases where MSE ratios

are presented in bold numbers).

Recall that the PPP fundamentals perform poorly in the band spectral regression for h = 1. Figures

7(a) and (b) in the Online Appendix show that LASSO can improve the forecast and give the answer to

the question of why the band spectral regression does not work well. For Canadian dollars and Australian

dollars, seemingly there is a structural break in the relationship between the fundamentals and the exchange

rate. More precisely, LASSO gives a lower MSE ratio than that of the band spectral regression when λ is

selected in a way that eliminates all frequency components before some certain rolling window, implying

that MSE ratios would be very high before some point due to the poor forecasting power of the model. In

the early sample period, the relationship does not exist for all frequencies, but it suddenly appears in the

later sample period. The estimated A for the monetary fundamentals model in Figures 8(a) and (b) in the

Online Appendix also indicate structural breaks for the UK pound. As for the Japanese yen, there seems

to be relative importance in lower frequencies.

As for the Taylor rule fundamentals model in Figures 9(a) and (b) in the Online Appendix, the Japanese

yen and the UK pound can be forecast by the Taylor rule only for the early period of their samples. These
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facts suggest that the reason why the Taylor rule fundamentals fail to forecast the future exchange rate,

regardless of frequency, with the band spectral regression is that the link between the fundamentals and

exchange rate was severed during the sample period. However, one can forecast the Australian dollar by

the Taylor rule when low or all frequencies are utilized. The UK pound also has a structural break, but

for most of the sample, the link between the fundamentals and the exchange rate is preserved for almost

all frequencies. The forecast of the Swiss franc can be improved slightly, by using selective frequencies.

Overall, however, the PPP fundamentals for the all sample period can forecast the Swiss franc quite well.

4.4.2 High h with LASSO

For longer forecasting horizons, Table 13 reveals that the PPP fundamentals model performs quite well

with the exception of Japan. Interestingly, the monetary fundamentals model works well only for Japan

with h = 6, 12, 24 and the UK with h = 6.

Table 13: Minimum MSE Ratios for h=6,12, and 24

Model Canada Japan Switzerland UK Australia

PPP (h=6) 0.424 1.000 0.379 0.745 0.529

PPP (h=12) 0.305 1.000 0.286 0.816 0.372

PPP (h=24) 0.213 1.000 0.227 0.916 0.332

Monetary (h=6) 0.887 0.537 1.000 0.939 0.856

Monetary (h=12) 0.933 0.467 1.000 0.978 0.938

Monetary (h=24) 1.000 0.458 1.000 0.983 0.950

Note: The numbers in bold indicate that the MSE ratio is lower than any of the corresponding currency’s MSE ratios

found in the fixed band spectral regression in Subsection 4.2.1.

Why does LASSO sometimes fail to reach a lower MSE ratio than the one that the fixed band spectral

regression reaches? Given the way we select a λ that minimizes the MSE ratio, there are two possible

explanations pertaining to the existence of abrupt changes, outliers, or structural breaks.

First, suppose there is a fixed band that consistently has the lowest squared error across rolling windows.

Note that λ is assumed to be the same for all rolling windows, and the relevant frequencies for forecasting

are estimated as the solution to (17) within each rolling window, given λ. However, such estimated

frequencies may vary with the rolling window if there are outliers in some rolling windows that push the

estimated frequency away from the true ones in those windows. In such a case, the resulting MSE ratio

from LASSO becomes larger than that from the fixed band spectral regression. Second, suppose there is a
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rolling window whose out-of-sample forecast yields a relatively large squared error due to abrupt changes

in the variables, compared to other rolling windows. Then, LASSO would select a λ that eliminates such

a large squared error, which we call λ∗, but this λ∗ may not be optimal for the rest of the rolling windows.

Looking at Figures 10 through 12 in the Online Appendix, the PPP fundamentals work well because

of the absence of a structural break in the link between the fundamentals and the exchange rate for all the

horizons considered. Therefore, it is possible to make a forecast by properly choosing frequencies from low

and middle ranges.11 Additionally, consistent with the results from the band spectral regression and BMA,

business cycle frequencies (to some extent, low frequencies as well) play an important role in forecasting

out-of-sample exchange rates as h increases.

When monetary fundamentals are utilized, the Japanese yen is the only currency (exchange rate) for

which LASSO finds a lower MSE ratio than the band spectral regression does. As Figures 13(a) and (b)

in the Online Appendix show, we can draw similar conclusions as the PPP model: the lack of a structural

break and the relative importance of low and business cycle frequencies allow for making a better forecast.

All in all, LASSO provides (i) satisfactory forecasting power relative to fixed band spectral regression,

(ii) information as to which frequencies are important for an accurate forecast, and (iii) information as

to why band spectral regression sometimes fails to forecast the future exchange rate. It can also provide

information about the dynamic relationship between forecasting variables and exchange rates.

5 Conclusion

We propose that band spectral regression be utilized to improve the out-of-sample forecast of exchange

rates. When a one-period-ahead forecast is considered, there is some evidence that the band spectral

regression benefits us, especially when the Taylor rule fundamentals model is employed. However, when

the forecasting horizon increases, the PPP fundamentals model is found to be powerful, and we can improve

the out-of-sample forecast by selecting the appropriate frequency bands. BMA shows that placing a high

weight on the business cycle frequency improves the accuracy of the out-of-sample forecasting of the PPP

model (as well as the monetary fundamentals model) when a longer forecasting horizon is our focus.

Without specifying the frequency bands prior to applying the regression, LASSO can generally provide

11Note that the MSE ratio of the band spectral regression reaches less than 1 but is not statistically significant. A drawback

of the LASSO approach is that one cannot see whether the forecast is statistically significantly better than the random walk

model.
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better out-of-sample exchange rate forecasts for many cases but most patently for the PPP fundamentals

model.
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Appendix 1: The Data

Country Data Start Data End

Canada March, 1973 February, 2017

Japan March, 1973 February, 2017

Switzerland March, 1973 November, 2013

UK March, 1973 April, 2006

Sweden January, 1991 February, 2017

Australia March, 1973 February, 2017

Notes: i) The money supply for the UK is not M1, which is not available for most sample periods. Instead, we use

M0 for the UK. ii) Monthly industrial production data are not available for Switzerland and Australia. The monthly

data of CPI are not available for Australia. For those cases, we follow Molodtsova and Papell (2009): use the Eviews

command "quadratic-match average" to render quarterly data to monthly data.
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Figure 1: The Squared Gains for Filtering (h = 6, 12, and 24).

Figure 2: Posterior Model Probabilities for the PPP, Monetary, and Taylor Rule Fundamentals Models for

h = 1. (Model numbers correspond to the frequency bands in Table 1)
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Figure 3: Posterior Model Probabilities for the PPP Fundamentals Model for h = 6, 12, and 24. (Model

numbers correspond to the frequency bands in Table 1)

Figure 4: Posterior Model Probabilities for the Monetary Fundamentals Model for h = 6, 12, and 24. (Model

numbers correspond to the frequency bands in Table 1)
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Figure 5: MSE ratio and λ for the PPP fundamentals model with h = 1

Figure 6: MSE ratio and λ for the PPP fundamentals model with h = 6
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